
Proceedings of the 25" Annual International Conference of the IEEE EMBS
Cancun, Mexico * September 17-21,2003

Static and Dynamic Properties of DNA Languages

L. Kari', S. Konstantinidis2
'Department of Computer Science, University of Westem Ontario, London, Ontario, N6A 5B7, Canada

Department of Math. &Computing Science, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada 2

Abstract-We provide an overview of some current
developments on code-related properties of DNA languages. A
DNA language is a set of words, each of which is made up of
the letters A, C, G, T. Such a word is meant to represent a
physical DNA strand. A collection of DNA strands can be
stored in-vitro and, either serve the purpose of a database, or
undergo a sequence of controlled hio-operations that would
constitute a meaningful computation. In both cases, the strands
should be chosen in such a way that they would not form
unwanted hybridizations with each other and any errors in the
nucleotides comprising the strands can be detected. These
requirements can he translated in the framework of formal
language theory by considering DNA languages whose words
satisfy certain combinatorial properties. We consider two types
of desirable properties: static and dynamic. The former ensure
that no unwanted hybridizations can occur. The latter ensure
that, after a permitted bio-operation is applied to the strands,
the resulting strands also satisfy the desirable properties.

Keywords-DNA codes, DNA computing, formal languages

I. INTRODUCTION

The possibility of DNA computing is based on the fact
that information can be encoded using words over the four-
letter alphabet [A, C, G, TI, which can then be represented
physically by DNA strands. Moreover, these strands can be
processed using certain bio-molecular techniques, which we
call bio-operations. such as hybridization, denaturation,
separation by length, cutting and pasting at desired
locations, etc. In most proposed DNA-based algorithms, the
initial DNA solution encoding the input to the problem will
contain some DNA strands which represent single
codewords, and some which represent strings of
concatenated codewords.

Several attempts have been made to address the issue of
"good encodings" by trying to find sets of codewords which
are unlikely to form undesired bonds with each other by
hybridization [3], [7). For example genetic and evolutionary
algorithms have been developed which select for sets of
DNA sequences that are less likely to form undesirable
bonds [4], (51. [6] has developed a program to create DNA
sequences to meet logical and physical parameters such as
uniqueness, melting temperatures and GIC ratio as required
by the user. [IO] has designed a software for constraint-
based nucleotide selection. [8] has investigated encodings
for DNA computing in virtual test tubes. [19] used
combinatorial methods to calculate bounds on the size of a
set of fixed-length codewords (as a function of codeword
length) which are less likely to mis-hybridize.

.

In this overview we present some of the main ideas and
results from [15], [13], and [16], in which certain
requirements of avoiding unwanted hybridizations and
detecting random nucleotide errors in DNA strands are
formalized as language properties. W e define the DNA
involution t to be the mapping that evaluates the Watson-
Crick complement of a DIVA strand as follows:

If w = BIB Z...EI. is a DNA word, with each B,
being a letter in I:A, C, G, TI, then t(w) is the word
t(B.1 ... t(Bz)t(Bl). Moreover we have that t(A) = T,
t(T) = A, t(C) = G, t(G) = C. For example,
t(AAGCTC) = GAGCTT.

By convention, a word of the form BIB 2...B. will represent
the corresponding single DNA strand in the 5' to 3'
orientation: 5 ' - BIB 2 . . .B , , - 3'.

When a collection of DNA strands is stored in vitro,
certain hybridizations can be formed between strands due to
the Watson-Crick comp1e:mentarity property of nucleotides.
Figures 1 - 3 show three (of the many possible ways that this
could happen. From the]point of view of DNA computing,
such formations are normally undesirable because the data
involved in them cannot be processed. In the next section we
address this problem from the point of view of formal
languages.

X IJ

5 , J - I T - y 3'

t(1')

Fig. 1. The strand t(u) sticks to the strand xuy

5' +I +3'
3' t(uv) 5'

Fig. 2. The strand t (w) sticks to the concatenation
of the strands xu and vy

U X

3'
5'

Y
::m

t(u)

Fig. 3. The strand yt(u) sticks to the strand ux

0-7 803 -77 89-3/03/$17 .OO 0 2 0 0 3 IEEE 3846

11. STICKY-FREE LANGUAGES

A language is any set of words. In this section we
consider languages L with the following properties.

strictly r-compliant [15]: when no two words in L are of
the form xuy and t(u). With this property, no words in L
can form the structure shown in Fig. 1 .
strictly t-free [13]: when no three words in L are of the
form xu, vy, t(uv). With this property, no words in L
can form the structure shown in Fig. 2.
strictly I-sticky-free [16]: when no two words in L are of
the form ux, yt(u). With this property. no words in L
can form the structnre shown in Fig. 3.

For example, the language X = [ACTA, ATAA, ATTA) is
strictly t-compliant but not strictly t-free because ATTA is
equal to t(TAAT) and ACTA ends with TA and ATAA
starts with AT. On the other hand, the language Y =
(AATCC, AATGTCC, AATITCC) satisfies all the
preceding properties. Constructing languages with short
words that satisfy these properties is not a difficult task. If
longer words are needed, however, a computer search might
be intractable (long DNA words might be needed in certain
DNA computations such as in Adleman's experiment [l]).
The following results provide a mathematical method of
generating DNA languages with arbitrarily long and many
words.

Every strictly t-free4inguage is also strictly t-compliant

If K is strictly t-free:then also K+ is strictly t-free [13].
If K is strictly I-sticky-free then also K+ is strictly t-
sticky-free 1161.

1131.

The language K t obtains:;by concatenating one or more
words of K; therefore;,K+ is an infinite language. For
example, using the language Y, we can generate the
language Y+ that satisfies -the three properties and includes
the words of Y and concatenations of these words such as
AATCCAATCC, AATGTCCAATCC, etc.

This was a particula~method of obtaining large DNA
languages from simpler ones. The reader is referred to [13]
and [16] for other methods as well as for additional
properties of DNA languages.

IU. OPERATION-INVARIANT LANGUAGES

Several theoretical models of DNA computation have
been proposed, most of which involve the concept of a
multi-set of words [141. [ZO], [I I]. Informally, a multi-set of
words M, say, is a collection of words such that a word
might occur in M more than once. A word operation, say f,
is a function that when applied to M it alters some of the
words in M, resulting thus in a new multi-set N. A multi-set
represents a test tube containing DNA strands and the

operation represents a physical hio-operation that is applied
to some of these strands - this could be, for instance, the
action of a certain restriction enzyme. Consider for example,
the splicing operation f specified by the expression (splicing
rule)

(ACC#GG, lT#AAA)

If M contains two strands of the form xACCGGy and
uTTAAAv, and f is applied on M then these strands would
be replaced with the strands xACCAAAv and ulTGGy. In
general, for a fixed hut arbitrary set of operations F, the
notation M=>N represents the fact that the multi-set N
results from M by performing some operation f in F.
Similarly, the notation M=>+N represents the fact that N
results from M by performing a sequence of one or more
operations in F. A multi-set system is a triple SYS = (Z, A,
F), where Z is the word alphabet, A is the initial multi-set of
words, and F is the set of permitted operations. The
computation language of SYS is the set of words that appear
in the steps of all possible sequences of operations that start
from the initial multi-set A.

The computation language, say L, of SYS should satisfy
properties such as the ones defined in the previous section,
as this would ensure that the undesirable hybridizations
shown in Fig. 1-3 will not occur during any computation
of SYS. This means that the language L would be F-
invariant: if any operation of F is applied to some words of
L then the resulting words will also he in L. In [16] we
provide polynomial-time algorithms for testing whether a
given regular language is invariant for a given set of
operations F. Moreover, we discuss a method of choosing
the initial multi-set A and the set of operations F such that
the computation language of SYS is a subset of an F-
invariant language that satisfies the three desirable
properties. The method requires choosing a comm-free
code K that is strictly I-free and strictly t-sticky-free and the
operations in F are K-delimited. A set K of words is a
comma-free code' if no three words U, v, w in K satisfy the
equation uv = xwy - see 1161 for explanations on K-
delimited operations. It can be shown that, under these
assumptions ahout K and F, the language K+ is F-invariant.
Moreover, by the results of the previous section, K t is also
strictly t-free and strictly I-sticky-free. Thus, if the initial
multi-set A contains only words from K+ then the
computation language of SYS will be a subset of Kt .

In [I31 we provide a sequence K(n;m) of comma-free
codes satisfying the above properties such that the
information rates of these codes tend to (1 - Ilm) as n tends

' The concept of comma-free code was first introduced in
191. At that time it was believed by many that the biological
code is comma-free, but this conjecture was disproved later
with the work of Niernberg [Z]. Nevertheless, comma-free
codes continue to be of interest and, in fact, they have been
used in deep space communications [21].

1847

to infinity - the parameter m is fixed hut arbitrary. An
example of such a code is the set K(1;3) that consists of the
following DNA words:

AAATCCC, AAATAATCCC, AAATACTCCC
AAATAGTCCC, AAATATTCCC, AAATCATCCC
AAATCCTCCC, AAATCGTCCC, AAATCTCCCC
AAATGATCCC, AAATGCTCCC, AAATGGTCCC
AAATGTTCCC, AAATTATCCC, AAATTCTCCC
AAATTGTCCC, AAATITTCCC.

According to the preceding discussion, any arbitrary
collection of strands that are made of the above code words
will never form any of the hybridizations shown in Fig. 1 -
3.

The set of all multi-set systems over a large alphabet I:
is powerful enough to simulate any Turing machine [14]. By
the results of 1131, it is possible to encode an arbitrary multi-
set system T with an appropriate K(n;m)-based system SYS,
which uses the DNA alphabet (A, C, G, T) , such that the
results of the computations of SYS are equivalent to those of
the system T - see [131 for more precise explanations.

IV. ADDING ERROR-DETE~ION CAPABILITIES

In addition to hybridizations, random nucleotide errors
might occur in DNA strands. These errors could be
substitutions, insertions, and deletions. More specifically,
the nucleotide A, say, in a strand xAy can he substituted by
a different nucleotide, say T, resulting in the strand xTy. The
most common types of substitution errors are transitions (C
by T, T by C, A by G, G by A) and transversions (C by A, A
by C, C by G, G by C, T by A, A by T, T by G, G by T)
[18]. Another possibility is that the nucleotide A might he
deleted from the strand xAy, which would result in the
strand xy, or it might be inserted in a strand of the form xy
resulting in the new strand xAy. Here we consider a channel
model in which at most one substitution, insertion, or
deletion error is permitted in any m consecutive nucleotides
of a DNA strand, where m is a fixed hut arbitrary parameter.
We use the expression sid(1, m) to denote such a channel.

Suppose that the computation language of interest is L
and is expected that only words in L can be decoded. Then
any channel errors applied to the words of L should be
detected. In general, if a language L is error-detecting for a
given channel then no word of the language can be
transformed to another word of the language using the errors
permitted by the channel - see [17] for the property of error-
detection for arbitrary channels. The problem of
constructing languages capable of detecting various error
combinations is, in general, non-trivial. Here we are
interested in the case where the language L is of the form
K+, where K is a comma-free code of the type considered in

the previous section and satisfies additional properties that
would ensure that K+ is error-detecting for the channel
sid(1 ,m).

For any DNA word w, we define the parity symbols
pc(w) and pg(w) as follows [16]:

pc(w) = A or T, depending on whether w contains an
odd or even, respectively, number of A s and C's.
pg(w) = A or T, depending on whether w contains an
odd or even, respectively, number of A s and Gs.

Let x be any DNA'word of the form CzG, where z contains
only symbols from (C, G) (if any), with the property that x
is equal to t(x) - CG' and CCGG are examples of such
words. Let i be the length of x. Consider the code K
consisting of all the word:r of the form

x C w PC(W) pg(w) T

where w is any DNA word of length (m - i - 4) with the
property that the pattern .I(does not occur in any position of
xCw other than the first. In [16] it is shown that the
language K+ is error-detecting for the channel sid(l,m),
strictly t-free and strictly t-sticky-free, and F-invariant for
any set F of K-delimited operations. A concrete example of
the code K is the following.

CGCAATlT, CGCTAAAT. CGCCATAT,
CGCACTAT, CGCTCATT, CGCCATAT.
CGCAGATT, CGCTGTAT, CGCCTATT
CGCATAAT, CGC'ITITT,

According to the preceding discussion, the language K+ is
error-detecting for the ch:mnel sid(l,8).

V. DISCUSSION

In [16] we performed a few empirical tests for checking
whether certain DNA languages posses the three properties
considered in Section II. Here we present some of these tests
on the DNA encoding used in Adleman's experiment [I] for
computing a Hamiltonian path in a given directed graph. In
this problem the question is whether there is a path starting
at the input node, ending at the output node, and passing
through all the nodes (exactly once. In Adleman's DNA
solution to the problem, each node and each edge was
encoded using a 20-letter long DNA sequence. Table 1
shows the results of testing whether the set of nodes and the
set of edges, taken separately and together, have the three
encoding properties we have defined.

We also tested the same data for the modified properties
of 0.85 strictly t-complizmce and 0.85 strictly t-freedom.

3848

TABLE 1

Edges Nodes Both
strictly t-compliant yes yes no
strictly t-free yes yes no
strictly t-sticky-free no no no

TABLE 2

Edges Nodes Both
0.85 strictly t-compliant yes yes no
0.85 strictly t-free yes yes no

A language L is 0.85 strictly t-compliant if there are no two
words in L of the form xuy and t(v) such that at least 85% of
the corresponding nucleotides in U and t(v) are equal - see
[16] for more details on the refined properties. The results of
these tests are shown in Table 2.

The empirical tests suggest that our definitions of good
encodings are quite promising. Directions for further
research include a detailed investigation of the refined
properties.

ACKNOWLEDGMENT

We thank Len Adleman for providing the DNA
sequences that were used in his 1994 experiment.

REFERENCES

[I] L. Adleman, ' 'Molec~la~ computation of solutions to
combinatorial problems," Science, vol 266. pp. 1021 - 1024,
1994.

[2] 1. Berstel. D. Perrin, Theory ofcodes. Academic Press, Orlando.
1985.

[3] R. Deaton, R. Murphy. M. Garzon, D. R. Franceschetti. S. E.
Stevens, "Good encodings for DNA-based solutions to
combinatorial problems." in Proc. ofDNA-Based Computers 11,
Princeton and in AMS DIMACS Series, vol. 44, L. F.
Landweher. E. Baum. (eds.). pp. 247 - 258, 1998.

I41 R. Deaton. M. Garzon, R. Murphy, D. R. Franceschetti. S. E.
Stevens, "Genetic Search of Reliable Encodings for DNA Based
Computation." in Pmc, First Conference on Generic
Programming GP-96, Stanford U., pp. 9 - 15. 1996.

R. E. Murphy, 1. A. Rose, M. G a r " D. R.
Franceschetti. S. E. Stevens Jr., "A DNA based implementation
of an evolutionary search for good encodings for DNA
computation, " in Proc. IEEE Conference on Evolutionary
Computation ICEC-97. pp. 267 - 271. 1997.

161 U. Feldkamp. S. Saghafi. H. Rauhe. "DNASequenceGenerator:
A program for the construction of DNA sequences, '' in 1121, pp.
179- 189.

171 M. Garzon. P. Neathery, R. Deaton, R. C. Murphy. D. R.
Franceschetti. S. E. Stevens Jr., "A new metric for DNA
computing. " in J. R. Koza, K. Deb, M. Dorigo. D. B. Vogel. M.

151 R. Deaton.

Garzon. H. lba. R. L. Riolo. (eds.), Proc. 2nd Annual Genetic
Programming Conference. Stanford. CA. pp. 472 - 478. 1997.

181 M. Garzon. C. Oehmen. "Biomolecular computation in vinual
test N ~ S . " in 1121, pp. 75 - 83.

[Y] S. W. Golomb, B. Gordon. L. R. Welch. "Comma free codes."
Canadian Joumal ofMathematics, vol. IO. pp. 202 - 209, 1958.

[IO] A. I. Hanemink, D.K. Gifford, J. Khodar. "Automatic constraint-
based nucleotide sequence selection for DNA computations. '' in
Proc. DNA-Based Computers IV, Philadelphia and in
Biosystemr, vol. 52, L. Kari. H. Rubin, D. H. Woad, (guest eds.),
pp. 227 - 235. 1999.

[I I1 T. Head, "Formal language theory and DNA: An analysis of the
generative capacity of specific recombinant behaviors." Bull.
Math. B i ~ l ~ g y . vol. 49, pp. 737 - 759, 1987.

[I21 N. Jonaska. N. C. Seeman, (eds), "DNA computing: DNA-Based
Computers VII, Tampa, Florida, 2001, '' Lecture Notes in
Comp. Science. vol. 2340, Springer. 2002.

1131 S. Husaini, L. Kari. S. Konstantinidis. "Coding properties of
DNA languages, '' in [12]. pp. 107 - 118 and in Theorel. Comp.
Science, vol. 290, pp. 1557 - 1579. 2003.

1141 L. Kari. "DNA computing: arrival of biological mathematics,"
The Mathemalicol htdligencer. vol. 19, nr.2. pp. 9 - 22, 1997.

[I51 L. Kari, R. Kitto, G. Thierrin. "Codes. involutions and DNA
encoding., " in Lecture Notes in Comp. Science, vol. 2300, pp.
376 - 393,2002.

1161 L. Kari, S. Konstantinidis. E. Losseva. G. Wozniak, "Sticky-free
and overhang-free DNA languages," Acta lnfomlico (to
appear).

1171 S. Konstantinidis. A. OHeam, "Error-Detecting Propenics of
Languages. '' Theoret. Comp. Science. vol. 276, pp. 355 - 375,
2002.

[I81 B. Lewin. Genes Vll , Oxford Univ. Press. 2000.
1191 A. Marathe, A. Condon, R. Com, "On combinatorial DNA word

design, '* in Proc. DNA based Computers V. pp. 75 - 89. 1999.
1201 G. Pam. G. Rorenherg, A. Salomaa, (e&). DNA Computing:

New computing Porndigms. Springer, Berlin. 1998.
1211 S. Wicker, "Deep space applications, '' in Handbook of Coding

Theory vol. 11. chapter 25, pp. 2119 - 2169. Elsevier, 1998.

3849

