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Abstract-We provide an overview of some current 
developments on code-related properties of DNA languages. A 
DNA language is a set of words, each of which is made up of 
the letters A, C, G, T. Such a word is meant to represent a 
physical DNA strand. A collection of DNA strands can be 
stored in-vitro and, either serve the purpose of a database, or 
undergo a sequence of controlled hio-operations that would 
constitute a meaningful computation. In both cases, the strands 
should be chosen in such a way that they would not form 
unwanted hybridizations with each other and any errors in the 
nucleotides comprising the strands can be detected. These 
requirements can he translated in the framework of formal 
language theory by considering DNA languages whose words 
satisfy certain combinatorial properties. We consider two types 
of desirable properties: static and dynamic. The former ensure 
that no unwanted hybridizations can occur. The latter ensure 
that, after a permitted bio-operation is applied to the strands, 
the resulting strands also satisfy the desirable properties. 
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I. INTRODUCTION 

The possibility of DNA computing is based on the fact 
that information can be encoded using words over the four- 
letter alphabet [A, C, G, TI,  which can then be represented 
physically by DNA strands. Moreover, these strands can be 
processed using certain bio-molecular techniques, which we 
call bio-operations. such as hybridization, denaturation, 
separation by length, cutting and pasting at desired 
locations, etc. In most proposed DNA-based algorithms, the 
initial DNA solution encoding the input to the problem will 
contain some DNA strands which represent single 
codewords, and some which represent strings of 
concatenated codewords. 

Several attempts have been made to address the issue of 
"good encodings" by trying to find sets of codewords which 
are unlikely to form undesired bonds with each other by 
hybridization [3], [7). For example genetic and evolutionary 
algorithms have been developed which select for sets of 
DNA sequences that are less likely to form undesirable 
bonds [4], (51. [6] has developed a program to create DNA 
sequences to meet logical and physical parameters such as 
uniqueness, melting temperatures and GIC ratio as required 
by the user. [IO] has designed a software for constraint- 
based nucleotide selection. [8] has investigated encodings 
for DNA computing in virtual test tubes. [19] used 
combinatorial methods to calculate bounds on the size of a 
set of fixed-length codewords (as a function of codeword 
length) which are less likely to mis-hybridize. 

. 

In this overview we present some of the main ideas and 
results from [15], [13], and [16], in which certain 
requirements of avoiding unwanted hybridizations and 
detecting random nucleotide errors in DNA strands are 
formalized as language properties. W e  define the DNA 
involution t to be the mapping that evaluates the Watson- 
Crick complement of a DIVA strand as follows: 

If w = BIB Z...EI. is a DNA word, with each B, 
being a letter in I:A, C, G, TI,  then t(w) is the word 
t(B.1 ... t(Bz)t(Bl). Moreover we have that t(A) = T, 
t(T) = A, t(C) = G, t(G) = C. For example, 
t(AAGCTC) = GAGCTT. 

By convention, a word of the form BIB 2...B. will represent 
the corresponding single DNA strand in the 5' to 3' 
orientation: 5 ' -  BIB 2 . . .B , , -  3'. 

When a collection of DNA strands is stored in vitro, 
certain hybridizations can be formed between strands due to 
the Watson-Crick comp1e:mentarity property of nucleotides. 
Figures 1 - 3 show three (of the many possible ways that this 
could happen. From the ]point of view of DNA computing, 
such formations are normally undesirable because the data 
involved in them cannot be processed. In the next section we 
address this problem from the point of view of formal 
languages. 
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Fig. 1. The strand t(u) sticks to the strand xuy 
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Fig. 2. The strand t (w)  sticks to the concatenation 
of the strands xu and vy 
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Fig. 3. The strand yt(u) sticks to the strand ux 
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11. STICKY-FREE LANGUAGES 

A language is any set of words. In this section we 
consider languages L with the following properties. 

strictly r-compliant [15]: when no two words in L are of 
the form xuy and t(u). With this property, no words in L 
can form the structure shown in Fig. 1 .  
strictly t-free [13]: when no three words in L are of the 
form xu, vy, t(uv). With this property, no words in L 
can form the structure shown in Fig. 2. 
strictly I-sticky-free [16]: when no two words in L are of 
the form ux, yt(u). With this property. no words in L 
can form the structnre shown in Fig. 3. 

For example, the language X = [ACTA, ATAA, ATTA) is 
strictly t-compliant but not strictly t-free because ATTA is 
equal to t(TAAT) and ACTA ends with TA and ATAA 
starts with AT. On the other hand, the language Y = 
(AATCC, AATGTCC, AATITCC) satisfies all the 
preceding properties. Constructing languages with short 
words that satisfy these properties is not a difficult task. If 
longer words are needed, however, a computer search might 
be intractable (long DNA words might be needed in certain 
DNA computations such as in Adleman's experiment [l]). 
The following results provide a mathematical method of 
generating DNA languages with arbitrarily long and many 
words. 

Every strictly t-free4inguage is also strictly t-compliant 

If K is strictly t-free:then also K+ is strictly t-free [13]. 
If K is strictly I-sticky-free then also K+ is strictly t- 
sticky-free 1161. 

1131. 

The language K t  obtains:;by concatenating one or more 
words of K; therefore;,K+ is an infinite language. For 
example, using the language Y, we can generate the 
language Y+ that satisfies -the three properties and includes 
the words of Y and concatenations of these words such as 
AATCCAATCC, AATGTCCAATCC, etc. 

This was a particula~method of obtaining large DNA 
languages from simpler ones. The reader is referred to [13] 
and [16] for other methods as well as for additional 
properties of DNA languages. 

IU. OPERATION-INVARIANT LANGUAGES 

Several theoretical models of DNA computation have 
been proposed, most of which involve the concept of a 
multi-set of words [141. [ZO], [I I]. Informally, a multi-set of 
words M, say, is a collection of words such that a word 
might occur in M more than once. A word operation, say f, 
is a function that when applied to M it alters some of the 
words in M, resulting thus in a new multi-set N. A multi-set 
represents a test tube containing DNA strands and the 

operation represents a physical hio-operation that is applied 
to some of these strands - this could be, for instance, the 
action of a certain restriction enzyme. Consider for example, 
the splicing operation f specified by the expression (splicing 
rule) 

(ACC#GG, lT#AAA) 

If M contains two strands of the form xACCGGy and 
uTTAAAv, and f is applied on M then these strands would 
be replaced with the strands xACCAAAv and ulTGGy. In 
general, for a fixed hut arbitrary set of operations F, the 
notation M=>N represents the fact that the multi-set N 
results from M by performing some operation f in F. 
Similarly, the notation M=>+N represents the fact that N 
results from M by performing a sequence of one or more 
operations in F. A multi-set system is a triple SYS = (Z, A, 
F), where Z is the word alphabet, A is the initial multi-set of 
words, and F is the set of permitted operations. The 
computation language of SYS is the set of words that appear 
in the steps of all possible sequences of operations that start 
from the initial multi-set A. 

The computation language, say L, of SYS should satisfy 
properties such as the ones defined in the previous section, 
as this would ensure that the undesirable hybridizations 
shown in Fig. 1-3 will not occur during any computation 
of SYS. This means that the language L would be F- 
invariant: if any operation of F is applied to some words of 
L then the resulting words will also he in L. In [16] we 
provide polynomial-time algorithms for testing whether a 
given regular language is invariant for a given set of 
operations F. Moreover, we discuss a method of choosing 
the initial multi-set A and the set of operations F such that 
the computation language of SYS is a subset of an F- 
invariant language that satisfies the three desirable 
properties. The method requires choosing a comm-free 
code K that is strictly I-free and strictly t-sticky-free and the 
operations in F are K-delimited. A set K of words is a 
comma-free code' if no three words U, v, w in K satisfy the 
equation uv = xwy - see 1161 for explanations on K- 
delimited operations. It can be shown that, under these 
assumptions ahout K and F, the language K+ is F-invariant. 
Moreover, by the results of the previous section, K t  is also 
strictly t-free and strictly I-sticky-free. Thus, if the initial 
multi-set A contains only words from K+ then the 
computation language of SYS will be a subset of Kt .  

In [I31 we provide a sequence K(n;m) of comma-free 
codes satisfying the above properties such that the 
information rates of these codes tend to (1 - Ilm) as n tends 

' The concept of comma-free code was first introduced in 
191. At that time it was believed by many that the biological 
code is comma-free, but this conjecture was disproved later 
with the work of Niernberg [Z]. Nevertheless, comma-free 
codes continue to be of interest and, in fact, they have been 
used in deep space communications [21]. 
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to infinity - the parameter m is fixed hut arbitrary. An 
example of such a code is the set K(1;3) that consists of the 
following DNA words: 

AAATCCC, AAATAATCCC, AAATACTCCC 
AAATAGTCCC, AAATATTCCC, AAATCATCCC 
AAATCCTCCC, AAATCGTCCC, AAATCTCCCC 
AAATGATCCC, AAATGCTCCC, AAATGGTCCC 
AAATGTTCCC, AAATTATCCC, AAATTCTCCC 
AAATTGTCCC, AAATITTCCC. 

According to the preceding discussion, any arbitrary 
collection of strands that are made of the above code words 
will never form any of the hybridizations shown in Fig. 1 - 
3. 

The set of all multi-set systems over a large alphabet I: 
is powerful enough to simulate any Turing machine [14]. By 
the results of 1131, it is possible to encode an arbitrary multi- 
set system T with an appropriate K(n;m)-based system SYS, 
which uses the DNA alphabet (A, C, G, T ) ,  such that the 
results of the computations of SYS are equivalent to those of 
the system T - see [ 131 for more precise explanations. 

IV. ADDING ERROR-DETE~ION CAPABILITIES 

In addition to hybridizations, random nucleotide errors 
might occur in DNA strands. These errors could be 
substitutions, insertions, and deletions. More specifically, 
the nucleotide A, say, in a strand xAy can he substituted by 
a different nucleotide, say T, resulting in the strand xTy. The 
most common types of substitution errors are transitions (C 
by T, T by C, A by G, G by A) and transversions (C by A, A 
by C, C by G, G by C, T by A, A by T, T by G, G by T) 
[18]. Another possibility is that the nucleotide A might he 
deleted from the strand xAy, which would result in the 
strand xy, or it might be inserted in a strand of the form xy 
resulting in the new strand xAy. Here we consider a channel 
model in which at most one substitution, insertion, or 
deletion error is permitted in any m consecutive nucleotides 
of a DNA strand, where m is a fixed hut arbitrary parameter. 
We use the expression sid(1, m) to denote such a channel. 

Suppose that the computation language of interest is L 
and is expected that only words in L can be decoded. Then 
any channel errors applied to the words of L should be 
detected. In general, if a language L is error-detecting for a 
given channel then no word of the language can be 
transformed to another word of the language using the errors 
permitted by the channel - see [17] for the property of error- 
detection for arbitrary channels. The problem of 
constructing languages capable of detecting various error 
combinations is, in general, non-trivial. Here we are 
interested in the case where the language L is of the form 
K+, where K is a comma-free code of the type considered in 

the previous section and satisfies additional properties that 
would ensure that K+ is error-detecting for the channel 
sid(1 ,m). 

For any DNA word w, we define the parity symbols 
pc(w) and pg(w) as follows [16]: 

pc(w) = A or T, depending on whether w contains an 
odd or even, respectively, number of A s  and C's. 
pg(w) = A or T, depending on whether w contains an 
odd or even, respectively, number of A s  and Gs. 

Let x be any DNA'word of the form CzG, where z contains 
only symbols from (C, G )  (if any), with the property that x 
is equal to t(x) - CG' and CCGG are examples of such 
words. Let i be the length of x. Consider the code K 
consisting of all the word:r of the form 

x C w PC(W) pg(w) T 

where w is any DNA word of length (m - i - 4 ) with the 
property that the pattern .I( does not occur in any position of 
xCw other than the first. In [16] it is shown that the 
language K+ is error-detecting for the channel sid(l,m), 
strictly t-free and strictly t-sticky-free, and F-invariant for 
any set F of K-delimited operations. A concrete example of 
the code K is the following. 

CGCAATlT, CGCTAAAT. CGCCATAT, 
CGCACTAT, CGCTCATT, CGCCATAT. 
CGCAGATT, CGCTGTAT, CGCCTATT 
CGCATAAT, CGC'ITITT, 

According to the preceding discussion, the language K+ is 
error-detecting for the ch:mnel sid(l,8). 

V. DISCUSSION 

In [16] we performed a few empirical tests for checking 
whether certain DNA languages posses the three properties 
considered in Section II. Here we present some of these tests 
on the DNA encoding used in Adleman's experiment [I] for 
computing a Hamiltonian path in a given directed graph. In 
this problem the question is whether there is a path starting 
at the input node, ending at the output node, and passing 
through all the nodes (exactly once. In  Adleman's DNA 
solution to the problem, each node and each edge was 
encoded using a 20-letter long DNA sequence. Table 1 
shows the results of testing whether the set of nodes and the 
set of edges, taken separately and together, have the three 
encoding properties we have defined. 

We also tested the same data for the modified properties 
of 0.85 strictly t-complizmce and 0.85 strictly t-freedom. 
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TABLE 1 

Edges Nodes Both 
strictly t-compliant yes yes no 
strictly t-free yes yes no 
strictly t-sticky-free no no no 

TABLE 2 

Edges Nodes Both 
0.85 strictly t-compliant yes yes no 
0.85 strictly t-free yes yes no 

A language L is 0.85 strictly t-compliant if there are no two 
words in L of the form xuy and t(v) such that at least 85% of 
the corresponding nucleotides in U and t(v) are equal - see 
[16] for more details on the refined properties. The results of 
these tests are shown in Table 2. 

The empirical tests suggest that our definitions of good 
encodings are quite promising. Directions for further 
research include a detailed investigation of the refined 
properties. 
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